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Gelation of particles with short-range attraction
Peter J. Lu1, Emanuela Zaccarelli3,4, Fabio Ciulla3, Andrew B. Schofield5, Francesco Sciortino3,4 & David A. Weitz1,2

Nanoscale or colloidal particles are important in many realms of
science and technology. They can dramatically change the pro-
perties of materials, imparting solid-like behaviour to a wide
variety of complex fluids1,2. This behaviour arises when particles
aggregate to form mesoscopic clusters and networks. The essential
component leading to aggregation is an interparticle attraction,
which can be generated by many physical and chemical mechan-
isms. In the limit of irreversible aggregation, infinitely strong
interparticle bonds lead to diffusion-limited cluster aggregation3

(DLCA). This is understood as a purely kinetic phenomenon that
can form solid-like gels at arbitrarily low particle volume frac-
tion4,5. Far more important technologically are systems with
weaker attractions, where gel formation requires higher volume
fractions. Numerous scenarios for gelation have been proposed,
including DLCA6, kinetic or dynamic arrest4,7–10, phase separa-
tion5,6,11–16, percolation4,12,17,18 and jamming8. No consensus has
emerged and, despite its ubiquity and significance, gelation is
far from understood—even the location of the gelation phase
boundary is not agreed on5. Here we report experiments showing
that gelation of spherical particles with isotropic, short-range
attractions is initiated by spinodal decomposition; this ther-
modynamic instability triggers the formation of density fluctua-
tions, leading to spanning clusters that dynamically arrest to
create a gel. This simple picture of gelation does not depend on
microscopic system-specific details, and should thus apply broadly
to any particle system with short-range attractions. Our results
suggest that gelation—often considered a purely kinetic phenom-
enon4,8–10—is in fact a direct consequence of equilibrium liquid–
gas phase separation5,13–15. Without exception, we observe gelation
in all of our samples predicted by theory and simulation to phase-
separate; this suggests that it is phase separation, not percolation12,
that corresponds to gelation in models for attractive spheres.

Gelation occurs in a wide range of systems where particles attract
each other2,5–8,11,12,15–18. When this attraction is infinitely strong,
particles form permanent bonds and grow as fractal clusters that, in
turn, bond irreversibly, and can ultimately span the system as a solid-
like gel, even as particle volume fraction w tends to zero (refs 4, 5, 12,
19). This DLCA limit occurs in many colloidal systems where the
interparticle attraction strength, U, is much larger than the
thermal energy kBT (refs 4, 5, 12); examples include gold3,20, silica3,
polymeric lattices3,6,19, calcium carbonate21, alumina2 and silicon
carbide2. Because bonds once formed never break, DLCA is governed
entirely by diffusion; it has thus been considered a purely kinetic
phenomenon3. Other mechanisms can cause kinetic arrest at far higher
w (ref. 5). Above w < 0.58, particles can arrest because of crowding to
form repulsive glasses, even when U 5 0; weakly attractive particles
can form attractive glasses at lower w (ref. 5). Because glasses and
DLCA are observed in the same experimental systems, they have been
linked within unified pictures of kinetic arrest4,7,9,10 or jamming8.

More generally, the onset of gelation can be parameterized by
three quantities, namely w, U/kBT and j. The last is the range of

the attractive potential in units of a, the particle radius4,22. These
three parameters define a three-dimensional state diagram in which
a gelation surface demarcates the well-defined boundary between
liquid-like and solid-like behaviour. Many important attraction
mechanisms that drive gelation are short-range (j , 0.1), including
van der Waals forces8,16,21, surface chemistry2,17,18, hydrophobic
effects7 and some depletion interactions9,15,23. Numerous explana-
tions have been advanced for gelation in this small-j limit to predict
the fluid–solid boundary in the U–w plane. Non-equilibrium,
kinetics-based models have extended the DLCA model to lower
U/kBT by treating bond breakage probabilistically6,12,20; have con-
nected the gelation boundary to the percolation threshold4,12,17,18;
and have extended the glass transition to lower w with mode-
coupling theory applied to local arrest of individual particles9, to
arrest of clusters4, and in concert with microscopic modelling of
the interparticle attractive potential23. Thermodynamic models
consider gelation initiated by fluid–crystal11, liquid–gas6,14,15, or
polymer-like ‘viscoelastic’16 phase separation, which may arrest
owing to percolation12 or a glass transition4. These models make
strikingly disparate predictions: there is no agreement on either the
gelation mechanism, or the location of the gelation boundary5,12,23.

Here we explore gelation experimentally with a widely-used
model colloid–polymer system6,11,22, where U/kBT and j are con-
trolled by the polymer size and free-volume concentration cp, but
in a fashion that is not precisely known. Fixing w 5 0.045 6 0.005
and j 5 0.059, we mix samples at various cp; we summarize the
samples studied by plotting their values of cp, normalized by the
polymer overlap concentration c�p , in the phase diagrams shown in
Fig. 1a, b. We eliminate gravitational sedimentation on multiple-day
timescales by meticulously matching the colloid and solvent
densities to within ,1024. After breaking up particle aggregates by
shearing, we observe sample evolution with a high-speed confocal
microscope24.

We observe two phases. In samples with low cp, below the experi-
mental gelation boundary cg

p, we observe a fluid of many clusters that
is stable for days; we show a full three-dimensional image of these
clusters in the fluid phase for a sample with cp 5 3.20 6 0.03 mg ml21,
the closest fluid-phase value below cg

p, in Fig. 1c and in Supplementary
Video 1. By contrast, in samples with cp . cg

p, particles aggregate
immediately into clusters, which in turn form a network that spans
the macroscopic sample. This network subsequently arrests to create a
gel, which we illustrate for a sample with cp 5 3.31 6 0.03 mg ml21, the
closest gel-phase value above cg

p, in Fig. 1d and in Supplementary
Video 2. The gel undergoes no major structural rearrangement for
days, even though it exchanges particles with a dilute gas, shown in
Supplementary Video 3. These phases are separated by a very sharp
boundary: the gel and fluid illustrated differ in cp by only a few
per cent. Our observation of only these two dramatically different
phases contrasts findings of more complex phase behaviour in non-
buoyancy-matched systems, where sedimentation can shift or obscure
the observed phase boundaries6,9,12,15,21.
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Locating the gelation boundary in general requires a means to
compare among experiments and with theory or simulation, using
universal thermodynamic quantities, like U/kBT, instead of system-
specific parameters, like cp (refs 9, 23). Unfortunately, it is impossible
to precisely determine U/kBT from a known cp, even using micro-
scopic models for the potential. Instead, we use the finding that the
behaviour of an attractive particle system for j , 0.1 depends not on
the shape of the potential, but only on its reduced second virial

coefficient, B�2:(3=8a3)
Ð?
0

(1{ exp ({U (r)=kBT))r2dr (ref. 25).

After each fluid sample has reached its long-term steady state, we
determine its cluster mass distribution n(s), the fraction of total
clusters that contain s particles. We then simulate hard spheres with
isotropic short-range attractions at the same w, determining n(s)
for different values of B�2 . For each experimental n(s), we select the

closest-matching simulated n(s) using a least-squares minimization.
This allows us to associate each cp with a unique B�2 , with no adjust-
able parameters. These fits all work remarkably well, irrespective of
the interparticle attractive potential shape, so long as the potentials
have the same B�2 , as shown in Fig. 2. Identical n(s) are observed for
the square-well, generalized Lennard–Jones, and Asakura–Oosawa
forms, commonly used for colloid–polymer mixtures9,23,26, substan-
tiating our cp–B�2 mapping even though the exact experimental
potential shape remains unknown. Measuring n(s) requires only
straightforward counting of particle bonds; by contrast, determining
B�2 with similar precision from scattering18 or radial distribution
functions27 requires far more accurate identification of particle
positions.

From B�2 , other thermodynamic quantities can be derived directly,
including kBT/U for different potential forms25. Considerable insight
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Figure 1 | Composition and structure of experimental gel and fluid samples.
a, Experimental samples in a cp/c�p and j phase diagram for constant
w 5 0.045. Black circles and red triangles indicate samples with 69 kDa and
681 kDa polystyrene polymers, respectively. Solid symbols mark fluid
samples; open symbols, gels. Actual measured cp values are on secondary
vertical axes of the same colour at right. b, Experimental samples in a cp/c�p
and w phase diagram for constant j 5 0.059, with cp of the 681 kDa polymer
used in all samples indicated on the secondary red axis at right. Error bars
represent the variation in w for different particle configurations from the
same sample. In a and b, dashed grey gelation boundaries are drawn to guide

the eye. c, 3D reconstruction (56 3 56 3 56 mm3), and (inset) single 2D
confocal microscope image, for the fluid with the highest cp 5 3.20 mg ml21.
The fluid’s clusters are coloured by their mass s (number of particles)
according to the colour bar, with monomers and dimers rendered in
transparent grey to improve visibility. d, Reconstruction and confocal image
of the gel with the lowest cp 5 3.31 mg ml21 shown at same scale, containing
a single spanning cluster. Samples in c and d are in the long-time steady state
four hours after mixing; their compositions are marked in a and b with the
purple numerals 1 and 2, respectively.
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is obtained by using n(s) fits to determine the values of kBT/U, cal-
culated for an Asakura–Oosawa potential with j 5 0.059 to match
the experiment, and plotting these as a function of cp for all fluid
samples. The data exhibit an unexpected linear dependence near
the experimentally determined gelation boundary at cg

p 5 3.25 6

0.05 mg ml21, as shown in Fig. 3a. We calculate the onset of phase
separation both in the Baxter model and with simulation, which, in
all cases, yield identical results. Remarkably, these correspond pre-
cisely to the experimentally determined value of kBT/U at the gel
boundary, as shown in Fig. 3a. This suggests that the gel boundary
occurs exactly at the boundary of phase separation. Because the
spinodal and binodal lines are very close for all short-range poten-
tials, such as those here, we do not observe nucleation and growth—
instead, the observed phase separation is always driven by spinodal
decomposition.

To confirm the generality of these results, we repeat the experi-
ment for different w and j. Again fixing j 5 0.059, we create addi-
tional samples at w < 0.13 and w < 0.16, as shown in the phase
diagram in Fig. 1b. Increasing w results in larger clusters, whose mass
distribution broadens to more closely resemble a power law, as
shown in Fig. 2f; this is reminiscent of an approach to the critical

point predicted at wc < 0.27 (ref. 28). In addition, for w 5 0.045, we
also reduce j to 0.018; this yields more tenuous, branched, thinner
clusters22. These samples are shown in the phase diagram in Fig. 1a. In
all cases, the experimentally determined value of kBT/U at the gela-
tion boundary coincides exactly with the theoretical phase separation
boundary, as shown in Fig. 3b–d. Finally, we consider the dependence
of B�2{1, normalized by the value at the phase separation boundary,
as a function of cp/cg

p. Unexpectedly, despite significant variation in
cluster morphology, all sample data scale onto a single master curve,
shown in Fig. 3e. This highlights the similarities in behaviour of all
samples on approach to the spinodal line and points to a universal
mechanism for gelation.

These data suggest that, for isotropic short-range interactions, all
gelation is triggered by spinodal decomposition, a phase separation
process driven by a thermodynamic instability. If this is so, then we
should independently observe other characteristics of equilibrium
phase separation in samples that form gels. One such feature is the
coexistence of gel and colloidal gas: we observe occasional exchange
of particles between gas and gel, as shown in Supplementary Video 3;
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Figure 2 | Comparisons among cluster mass distributions n(s) for
j 5 0.059. a, Comparison at w 5 0.045 between experimental data for cp 5 0
(circles), and simulation results for a hard-sphere potential (U/kBT 5 0 and
B�2 5 1; solid line), demonstrating an exact match. In this and all panels, value
of cp is in mg ml21. b, Three potentials at the same B�2 used to generate n(s) in
simulations with finite attractions; solid green, dashed blue and dotted red
lines denote square-well (SW), generalized Lennard–Jones (LJ) and
Asakura–Oosawa (AO) potentials, respectively. Example potentials shown
for B�2 5 21.47. c–e, Example comparisons at w 5 0.045 between
experimental n(s), marked by circles, and simulation n(s), by lines coloured as
the corresponding potentials in b. c, cp 5 0.54 mg ml21 and B�2 5 0.88.
d, cp 5 2.69 mg ml21 and B�2 5 0.56. e, cp 5 3.12 mg ml21 and B�2 5 20.90.
f, Comparisons for the fluids with the highest cp closest to the gel boundary at
cg

p . Circles denote the fluid with w 5 0.045 (cp 5 3.20 mg ml21 and
B�2 5 21.47; sample illustrated in Fig. 1c). Squares denote the fluid with
w < 0.16 (cp 5 1.67 mg ml21 and B�2 5 20.36), whose significantly larger
clusters are expected as the wc 5 0.27 critical point is approached. All data sets
match exactly, confirming that n(s) both usefully maps experimental to
simulation results and does not depend on potential shape.
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Figure 3 | Comparison of n(s) mapping of experimental cp to kBT/U. Data
are shown for a, w 5 0.045 and j 5 0.059, b, w 5 0.045 and j 5 0.018,
c, w < 0.13 and j 5 0.059, and d, w < 0.16 and j 5 0.059. Grey dashed
vertical lines demarcate the experimental gelation boundary at cg

p; horizontal
lines demarcate the theoretical phase separation boundary calculated in the
Baxter model (orange solid line) and with simulation (purple dotted line),
which always coincide. Coloured symbols (as used in Fig. 1a, b and shown in
the key in e) with best-fit lines represent the results of the n(s) mapping
illustrated in Fig. 2; error bars correspond to the uncertainty from the least-
squares fitting. The experimental gelation boundary exactly matches the
theoretical phase separation boundary for all w and j; by contrast, analytic
approximation to the Asakura–Oosawa potential, shown in light blue, does
not match at all. e, Mapping between cp and B�2{1 for all fluid samples,
where cp is normalized by cg

p (grey dashed vertical line), and B�2{1 by BPS
2 {1,

its value at the phase separation boundary (purple dotted horizontal line).
All data collapse onto a single master curve, highlighted with an orange line
to guide the eye. Gelation exhibits universal scaling independent of w, j or
shape of the short-range potential.
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this is not readily explained by kinetic gelation models based on local
arrest9,10. An even more distinctive hallmark of spinodal decomposi-
tion is the development of a peak in the static structure factor S(q) at
finite scattering vector q (refs 19, 29). We again observe this: in fluid
samples with w 5 0.045, j 5 0.059 and cp , cg

p, S(q) shows only a
slight rise at low q; however, increasing cp by just a few per cent across
cg

p increases the height of the peak in S(q) by two orders of magnitude,
as shown in Fig. 4a. Further distinguishing characteristics of spinodal
decomposition occur in the temporal evolution of S(q), where the
peak narrows and moves towards lower q, and in its first moment
q1(t), which exhibits a power law dependence. Once again, the gel
samples unambiguously demonstrate these features: at the earliest
times, the peak in S(q) narrows and moves to lower q, as shown in
Fig. 4b; moreover, q1(t) scales as t21/6, as shown in Fig. 4c, exactly as
in molecular spinodal decomposition30. Two hours after mixing, the
spinodal decomposition towards the equilibrium phase-separated

state is interrupted, as the sample dynamically arrests to form a gel;
S(q) and q1 no longer change with time, as shown in Fig. 4b–c. Similar
dynamics for S(q) are observed in all gel samples, further demonstrat-
ing that liquid–gas spinodal decomposition ubiquitously induces
gelation for short-range potentials.

Together, these results provide strong, quantitative physical evid-
ence that the gelation boundary for short-range attractive particles is
precisely equivalent to the boundary for equilibrium liquid–gas
phase separation. Gelation requires spinodal decomposition to
generate the clusters that span the system and dynamically arrest.
Our findings experimentally confirm previous theoretical predic-
tions5,13,14, and support the suggestion that the ostensibly purely kin-
etic DLCA regime is in fact a deeply quenched limit of spinodal
decomposition19,29. Thus, thermodynamic instability appears to
drive all gelation of particles with isotropic short-range attractions.

We cannot harmonize our results with predictions from phase
separation that is not liquid–gas11,16, nor from purely kinetic para-
digms4,8–10. However, the expression of these predictions as system-
specific cp/c�p values calculated for the Asakura–Oosawa potential
may affect comparison of results. To test this, we plot kBT/U versus
cp/c�p for an analytic approximation to the Asakura–Oosawa
potential9 in Fig. 3a–d, which in all cases dramatically misses the
actual potential strength determined from the n(s) mapping; this
corroborates previous findings that the Asakura–Oosawa model does
not quantitatively describe colloid–polymer mixtures23,26,27.

Instead, universal system-independent parameters, such as B�2 (refs
5, 12, 13, 15, 17, 18) and w, allow meaningfully quantitative compar-
ison between different experiments and with theory. We present such
a comparison, as a universal phase diagram for short-range gelation,
in Fig. 4d. Without exception, all samples predicted within the Baxter
model to phase-separate form gels. This suggests that the gelation line
coincides with the phase separation boundary in the Baxter model;
other isotropic short-range potentials have similar behaviour. For gel
samples, we estimate the volume fractions in both colloidal gas and
gel phases by numerically determining the free volume accessible to a
test particle of radius a; we consider this the total volume of the gas
phase, and assign the remaining volume to the gel. Surprisingly, we
find the that all spanning gel clusters have wg < 0.55, independent of
both cp and the average w before phase separation. We never observe
arrested spanning clusters with significantly lower wg; the attractive
glass line must therefore intersect the phase separation boundary at
w < 0.55 (refs 5, 13), consistent with the origin of kinetic arrest aris-
ing from the dense phase undergoing an attractive glass transition5,13.
Furthermore, wg does not decrease with increasing attraction
strength4,7,9, suggesting that the attractive glass line does not extend
into the phase separation region, but instead follows its boundary.

Our results could shed light on non-equilibrium behaviour in
technological systems. Even approximate measures of structural
parameters, such as n(s), may, when compared with simulations,
allow mapping between thermodynamic quantities and experimental
parameters when even the rough form of the potential cannot be
measured. Moreover, because the onset of non-equilibrium beha-
viour is in fact governed by equilibrium phase separation, ther-
modynamic calculations may facilitate quantitative prediction of
product stability, a critically important problem in the formulation
and manufacture of commercial complex fluids.

METHODS SUMMARY

We suspend polymethylmethacrylate (PMMA) colloidal spheres of radius

a 5 560 nm in a solvent mixture with matching buoyancy and refractive index,

adding an organic salt to screen Coulombic repulsion and linear polystyrene to

induce a depletion attraction22,24. We determine the radii of colloid and polymer

coils with light scattering. We image all samples in a high-speed, automated

confocal microscope24, collecting 181 images at 10 frames per second in each

three-dimensional (3D) stack, which occupies a 60 3 60 3 60 mm3 cube within

the sample. We use previously described image-processing software24 to deter-

mine the 3D positions of all colloidal particles in each sample. In total, we

collected half a terabyte of image data and located ,108 particles. We use
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Figure 4 | Spinodal decomposition in samples that form gels. a, S(q) in the
long-time steady-state limit for fluid samples at w 5 0.045 and j 5 0.059 with
cp # 3.20 mg ml21 (coloured symbols) and the gel sample with
cp 5 3.31 mg ml21 (black circles). Blue hexagons and black circles denote the
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show S(q) rising slightly at low q as cpRcg

p . As cp crosses cg
p into the gel region,

S(q) develops a significant peak two orders of magnitude higher. b, Time
evolution of S(q) for this gel. Immediately after sample homogenization, a
finite-q peak grows, narrows, and shifts to lower q, as expected for spinodal
decomposition. c, q1(t) (black diamonds) follows a t21/6 power law (red line),
another hallmark of spinodal decomposition. After two hours, the sample
arrests to form a gel, and S(q) and q1 do not change. d, Universal phase
diagram of the Baxter parameter t:1=4(B�2{1) and w for all samples, with
symbols as in Fig. 1a, b and estimates of w shown for both gas and gel phases
after phase separation. Error bars represent the variation in w for different
particle configurations from the same sample. All samples predicted to phase-
separate within the Baxter model, falling below the theoretical phase
separation boundary from ref. 28 (solid grey line), form gels with the same wg.
Speculative extensions of this boundary (dotted grey line) and of the glass
transition (dashed grey line) are plotted to guide the eye.
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Pixar’s RenderMan (https://renderman.pixar.com) to create 3D reconstruc-
tions. We perform simulations of fluid samples of 10,000 particles in a cubic

box with periodic boundary conditions for several values of B�2 , using several

simulated potentials: a hard-sphere potential, a square-well potential of width

0.04a, an Asakura–Oosawa potential of maximum width 0.08a, and a generalized

2a-a Lennard–Jones potential with exponent a 5 100. Following a constant-

temperature equilibration run, we generate 100 independent realizations in

the micro-canonical ensemble for subsequent analysis. We estimate the spinodal

line following the temperature-dependence of the energy and of the small

angle structure factor within simulations13, and using the energy route in the

Percus–Yevick approximation to the Baxter model for hard spheres with an

infinitesimally short attraction range28. We use the same procedure in experi-

ment and simulation to assign particles to clusters by considering which particles

share common bonds; two particles are considered bonded if they are separated

by less than the bond distance rb, fixed by matching the cp 5 0 cluster-mass

distributions. We use a least-squares minimization to best match numerical

distributions to the experimental results with no free parameters.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Colloid sample preparation. Following our previously reported procedure22,24,

we equilibrate sterically stabilized colloidal spheres of polymethylmethacrylate

(PMMA) with DiIC18 fluorescent dye in a 5:1 (by mass) solvent mixture of

bromocyclohexane (CXB, Aldrich) and decahydronaphthalene (DHN,

Aldrich) for several months. We add tetrabutylammonium chloride (TBAC,

Fluke) until saturated (,4 mM) to screen long-range Coulombic repulsion.

We then split the colloid suspension to create two stock solutions, adding linear

polystyrene (Polymer Labs) depletant polymer to one. We buoyancy-match each

stock solution individually by adding either CXB or DHN dropwise until part-

icles remain neutrally buoyant after centrifuging at 1,000g for 30 min at

25.0 6 0.1 uC. Mixing various ratios of the two stock solutions generates samples

at varying cp, while maintaining constant w, TBAC concentration, and buoyancy

match.

We determine the radius a 5 560 6 10 nm of our particles with dynamic light

scattering31. The solvent has viscosity g 5 1.96 mPa s at 25.0 6 0.1 uC, measured

with a Cannon-Fenske viscometer. For the depletant polystyrene, we selected

two molecular weights, MW 5 69.2 kDa and MW 5 681 kDa. From Zimm plots

of static light scattering data, we determine the radii of gyration rg of the two

polymers to be 10.0 and 33.0 nm, respectively. This yields j ; rg/a of 0.018 and

0.059, respectively, and overlap concentrations c�p:3MW=4pr3
g NA of 27.2 and

7.5 mg ml21, respectively, where NA is Avogadro’s number. In all cases, we

directly measure the raw polymer concentrations as a mass ratio of mg polysty-

rene per g of total sample mass, which we express as a w-dependent free-volume

cp (mg ml21) according to ref. 32.

Confocal microscopy. Following our previously reported imaging protocol22,24,

we load each sample into a glass capillary of internal dimension

50 3 2 3 0.1 mm3 (VitroCom), along with a small piece of magnetic wire with

25 mm diameter; we then seal the capillary with 5-min epoxy (DevCon). After

sealing, we can rehomogenize the sample at any time by agitating the magnetic

wire with a magnetic stirrer. We maintain the temperature of the microscope

stage and surrounding air at 25.0 6 0.2 uC, yielding a buoyancy match between

colloid and solvent that is better than 1024. With the confocal microscope, we

collect 3D stacks of 181 8-bit images, each 1,000 3 1,000 pixels, at 10 frames per

second. Each image stack covers a volume of 60 3 60 3 60mm3, taken from the

centre of the sample at least 20 mm away from any capillary surface to minimize

edge effects.

Although larger clusters persist in these samples, the confocal microscope can

collect 3D stacks only a few times a minute, far too slowly to track monomers,

dimers and other small clusters. Therefore, to ensure a broad sampling, after

homogenization and equilibration for four hours, we collect 26 independent 3D

image stacks within each fluid sample, separated by 100mm laterally, using our

automated confocal microscope24. To observe the evolution of gel samples, we

homogenize and immediately start observations, collecting 3D stacks of the same

sample volume every 50 s for the first 5,000 s, then every 1,000 s for the next

100,000 s. In each 3D stack, we determine the 3D position of each particle more

than 1 mm from the boundary of the imaging volume using previously described

image-processing software24, and measure w for each sample from these particle

counts. In total, we collected half a terabyte of image data and determined the

positions of ,108 particles. Our 3D reconstructions were rendered with Pixar’s

RenderMan.

Simulations. We perform simulations of N 5 10,000 particles in a cubic box

with periodic boundary conditions. For comparison to experimental samples

with cp 5 0, we use the hard-sphere potential. For comparison to fluid samples

with cp $ 0, we use three different attractive potential shapes, as shown in Fig. 2b:

a square-well of width 0.04a, an Asakura–Oosawa potential33 of maximum width

0.08a, and a generalized 2a-a Lennard–Jones potential with exponent a 5 100

(ref. 34). For the Asakura–Oosawa potential, we use Monte Carlo simulations35;

for the hard-sphere and square-well potentials, a standard event-driven algo-

rithm36; and for the Lennard–Jones potential, molecular dynamics35. In the latter

cases, the system is at first equilibrated in the NVT ensemble, followed by a

production run in the NVE ensemble, where 100 independent realizations are
collected and analysed.

Cluster mass distribution comparisons. In particle configurations from both

experiment and simulation, we define two particles as bonded if their centres are

separated less than the bond distance rb. All particles in a cluster share at least one

bond with at least one other particle in the same cluster. Particles in one cluster

share no bonds with particles in other clusters. Experimental uncertainties in

particle locations arise from particle diffusion during confocal imaging, forcing

the choice of rb to be slightly larger than its ideal value of the particle diameter

d 5 2a plus the interaction range, for example, 1.08d for the previously described

Asakura–Oosawa potential. We therefore set rb by matching the hard-sphere

simulations to the sample with cp 5 0, fixing this value for all samples at

rb 5 1.16d; n(s) comparisons are independent of the particular choice of rb, so

long as a consistent definition is applied to both experiments and simulations.

For each experimental sample, we ran the simulations at the same w. The least-

squares procedure to match n(s) from experiment and simulation equally

weights all clusters.

Static structure factor. For fluid samples, we average the static structure factor

S(q):
PN

j~1 exp (iq:rj )
��� ���2
� ��

N, where rj are the coordinates of particle j, over

the 26 independent configurations. For the gel samples, we follow a single con-

figuration over time. We calculate S(q) for all particles more than 4mm away

from all boundaries of the imaging volume to minimize edge effects, which, if

present, would affect only the range 2qa # 0.2. For the first moment

q1(t):(
Ðqc

0

S(q,t)qdq)=(
Ðqc

0

S(q,t)dq), we select the cut-off value 2qca 5 3 to ensure

the inclusion of all large wavelength contributions.

Estimation of w and B�2 for gel samples. We extend the linear fit of the U/kBT

versus cp for the fluid samples into the gel region at each w to estimate

t:1=4(B�2{1) for the gel samples shown in Fig. 4d. We estimate wg, the internal

volume fraction for spanning gel clusters, defined as those touching opposite

faces of the cubic imaging volume, by measuring the free volume accessible to a

spherical test particle of radius a. Splitting the imaging volume into a fine grid of

cubes with edge length lc=a, we place a test particle in each cube, and if no part of

it intersects with spanning cluster particles, the volume occupied by the test

particle is considered to be in the free volume. The fraction of sample volume

not part of the free volume is considered to be the total cluster volume. The total

volume of the particles within the cluster is their number times the volume per

particle; dividing this by the total cluster volume yields wg. We selected lc 5 0.25a,

but the measured wg values do not depend on lc for values below ,a/2 and

converge as expected for tests on standard structures, such as a cluster of the

f.c.c. lattice, where wR0.74. This approach is strictly applicable only to struc-
tures, such as the present gels, where the solid phase is more dense at the scale of a

single particle; our centrosymmetric interparticle attraction allows bond rota-

tion without energy cost, thereby requiring multiple bonds for stable structures,

leading to locally higher densities at the single-particle scale. By contrast, in the

wR0 limit of DLCA, the permanent particle bonds are fixed and do not allow

rotation, resulting in a more string-like local structure. For a straight line of

spheres, our measure yields the analytic result w 5 4/(10 2p!3) < 0.88, but is

less meaningful in this regime.
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